Zalando's images classification using H2O with R

Reading time:
time
min
By:
Appsilon Team
September 12, 2017

<h2 id="fashion-mnist">Fashion-MNIST</h2> About three weeks ago the Fashion-MNIST dataset of Zalando’s article images, which is a great replacement of classical MNIST dataset, was released. In the following article we will try to build a strong classifier using H2O and R. If you want to read more on <a href="https://appsilon.com/object-detection-yolo-algorithm/">image detection </a>&amp; <a href="https://appsilon.com/ship-recognition-in-satellite-imagery-part-i/">image classification</a> please go to linked articles. Each example is a 28x28 grayscale image, associated with a label from 10 classes: <ol><li>T-shirt/top</li><li>Trouser</li><li>Pullover</li><li>Dress</li><li>Coat</li><li>Sandal</li><li>Shirt</li><li>Sneaker</li><li>Bag</li><li>Ankle boot</li></ol> You can download it here <a href="https://www.kaggle.com/zalando-research/fashionmnist">https://www.kaggle.com/zalando-research/fashionmnist</a> The first column is an image label and the other 784 pixel columns are associated with the darkness of that pixel. <h2 id="quick-reminder-what-is-h2o">Quick reminder: what is H2O?</h2> H2O is an open-source, fast, scalable platform for machine learning written in Java. It allows access to all of its capabilities from Python, Scala and most importantly from R via REST API. Overview of available algorithms: <ol><li>Supervised:<ul><li>Deep Learning (Neural Networks)</li><li>Distributed Random Forest (DRF)</li><li>Generalized Linear Model (GLM)</li><li>Gradient Boosting Machine (GBM)</li><li>Naive Bayes Classifier</li><li>Stacked Ensembles</li><li>XGBoost</li></ul></li><li>Unsupervised<ul><li>Generalized Low Rank Models (GLRM)</li><li>K-Means Clustering</li><li>Principal Component Analysis (PCA)</li></ul></li></ol> Instalation is easy: <figure class="highlight"> <pre><code class="language-r" data-lang="r"><span class="n">install.packages</span><span class="p">(</span><span class="s2">"h2o"</span><span class="p">)</span></code></pre> </figure> <h2 id="building-a-neural-network-for-image-classification">Building a neural network for image classification</h2> Let’s start by running an H2O cluster: <figure class="highlight"> <pre><code class="language-r" data-lang="r"><span class="n">library</span><span class="p">(</span><span class="n">h</span><span class="m">2</span><span class="n">o</span><span class="p">)</span> <span class="n">library</span><span class="p">(</span><span class="n">tidyverse</span><span class="p">)</span> <span class="n">library</span><span class="p">(</span><span class="n">gridExtra</span><span class="p">)</span> <br><span class="n">h</span><span class="m">2</span><span class="n">o.init</span><span class="p">(</span><span class="n">ip</span> <span class="o">=</span> <span class="s2">"localhost"</span><span class="p">,</span>         <span class="n">port</span> <span class="o">=</span> <span class="m">54321</span><span class="p">,</span>         <span class="n">nthreads</span> <span class="o">=</span> <span class="m">-1</span><span class="p">,</span>         <span class="n">min_mem_size</span> <span class="o">=</span> <span class="s2">"20g"</span><span class="p">)</span></code></pre> </figure> <figure class="highlight"> <pre><code class="language-r" data-lang="r"><span class="n">H</span><span class="m">2</span><span class="n">O</span> <span class="n">is</span> <span class="n">not</span> <span class="n">running</span> <span class="n">yet</span><span class="p">,</span> <span class="n">starting</span> <span class="n">it</span> <span class="n">now...</span> <br><span class="n">Note</span><span class="o">:</span>  <span class="n">In</span> <span class="n">case</span> <span class="n">of</span> <span class="n">errors</span> <span class="n">look</span> <span class="n">at</span> <span class="n">the</span> <span class="n">following</span> <span class="n">log</span> <span class="n">files</span><span class="o">:</span>    <span class="o">/</span><span class="n">tmp</span><span class="o">/</span><span class="n">RtmpQEf3RX</span><span class="o">/</span><span class="n">h</span><span class="m">2</span><span class="n">o_maju116_started_from_r.out</span>    <span class="o">/</span><span class="n">tmp</span><span class="o">/</span><span class="n">RtmpQEf3RX</span><span class="o">/</span><span class="n">h</span><span class="m">2</span><span class="n">o_maju116_started_from_r.err</span> <br><span class="n">openjdk</span> <span class="n">version</span> <span class="s2">"1.8.0_131"</span> <span class="n">OpenJDK</span> <span class="n">Runtime</span> <span class="n">Environment</span> <span class="p">(</span><span class="n">build</span> <span class="m">1.8.0</span><span class="err">_</span><span class="m">131-8</span><span class="n">u</span><span class="m">131</span><span class="o">-</span><span class="n">b</span><span class="m">11-2</span><span class="n">ubuntu1.16.04.3</span><span class="o">-</span><span class="n">b</span><span class="m">11</span><span class="p">)</span> <span class="n">OpenJDK</span> <span class="m">64</span><span class="o">-</span><span class="n">Bit</span> <span class="n">Server</span> <span class="n">VM</span> <span class="p">(</span><span class="n">build</span> <span class="m">25.131</span><span class="o">-</span><span class="n">b</span><span class="m">11</span><span class="p">,</span> <span class="n">mixed</span> <span class="n">mode</span><span class="p">)</span> <br><span class="n">Starting</span> <span class="n">H</span><span class="m">2</span><span class="n">O</span> <span class="n">JVM</span> <span class="n">and</span> <span class="n">connecting</span><span class="o">:</span> <span class="n">..</span> <span class="n">Connection</span> <span class="n">successful</span><span class="o">!</span> <br><span class="n">R</span> <span class="n">is</span> <span class="n">connected</span> <span class="n">to</span> <span class="n">the</span> <span class="n">H</span><span class="m">2</span><span class="n">O</span> <span class="n">cluster</span><span class="o">:</span>    <span class="n">H</span><span class="m">2</span><span class="n">O</span> <span class="n">cluster</span> <span class="n">uptime</span><span class="o">:</span>         <span class="m">1</span> <span class="n">seconds</span> <span class="m">906</span> <span class="n">milliseconds</span>    <span class="n">H</span><span class="m">2</span><span class="n">O</span> <span class="n">cluster</span> <span class="n">version</span><span class="o">:</span>        <span class="m">3.13.0.3973</span>    <span class="n">H</span><span class="m">2</span><span class="n">O</span> <span class="n">cluster</span> <span class="n">version</span> <span class="n">age</span><span class="o">:</span>    <span class="m">1</span> <span class="n">month</span> <span class="n">and</span> <span class="m">5</span> <span class="n">days</span>      <span class="n">H</span><span class="m">2</span><span class="n">O</span> <span class="n">cluster</span> <span class="n">name</span><span class="o">:</span>           <span class="n">H</span><span class="m">2</span><span class="n">O_started_from_R_maju116_cuf927</span>    <span class="n">H</span><span class="m">2</span><span class="n">O</span> <span class="n">cluster</span> <span class="n">total</span> <span class="n">nodes</span><span class="o">:</span>    <span class="m">1</span>    <span class="n">H</span><span class="m">2</span><span class="n">O</span> <span class="n">cluster</span> <span class="n">total</span> <span class="n">memory</span><span class="o">:</span>   <span class="m">19.17</span> <span class="n">GB</span>    <span class="n">H</span><span class="m">2</span><span class="n">O</span> <span class="n">cluster</span> <span class="n">total</span> <span class="n">cores</span><span class="o">:</span>    <span class="m">8</span>    <span class="n">H</span><span class="m">2</span><span class="n">O</span> <span class="n">cluster</span> <span class="n">allowed</span> <span class="n">cores</span><span class="o">:</span>  <span class="m">8</span>    <span class="n">H</span><span class="m">2</span><span class="n">O</span> <span class="n">cluster</span> <span class="n">healthy</span><span class="o">:</span>        <span class="kc">TRUE</span>    <span class="n">H</span><span class="m">2</span><span class="n">O</span> <span class="n">Connection</span> <span class="n">ip</span><span class="o">:</span>          <span class="n">localhost</span>    <span class="n">H</span><span class="m">2</span><span class="n">O</span> <span class="n">Connection</span> <span class="n">port</span><span class="o">:</span>        <span class="m">54321</span>    <span class="n">H</span><span class="m">2</span><span class="n">O</span> <span class="n">Connection</span> <span class="n">proxy</span><span class="o">:</span>       <span class="kc">NA</span>    <span class="n">H</span><span class="m">2</span><span class="n">O</span> <span class="n">Internal</span> <span class="n">Security</span><span class="o">:</span>      <span class="kc">FALSE</span>    <span class="n">H</span><span class="m">2</span><span class="n">O</span> <span class="n">API</span> <span class="n">Extensions</span><span class="o">:</span>         <span class="n">XGBoost</span><span class="p">,</span> <span class="n">Algos</span><span class="p">,</span> <span class="n">AutoML</span><span class="p">,</span> <span class="n">Core</span> <span class="n">V</span><span class="m">3</span><span class="p">,</span> <span class="n">Core</span> <span class="n">V</span><span class="m">4</span>    <span class="n">R</span> <span class="n">Version</span><span class="o">:</span>                  <span class="n">R</span> <span class="n">version</span> <span class="m">3.4.1</span> <span class="p">(</span><span class="m">2017-06-30</span><span class="p">)</span> </code></pre> </figure> Next we will import data into H2O using <code class="highlighter-rouge">h2o.importFile()</code> function, in which we can specify column types and column names if needed. If you want to send data into H2O directly from R, you can use <code class="highlighter-rouge">as.h2o()</code> function <figure class="highlight"> <pre><code class="language-r" data-lang="r"><span class="n">fmnist_train</span> <span class="o">&lt;-</span> <span class="n">h</span><span class="m">2</span><span class="n">o.importFile</span><span class="p">(</span><span class="n">path</span> <span class="o">=</span> <span class="s2">"data/fashion-mnist_train.csv"</span><span class="p">,</span>                               <span class="n">destination_frame</span> <span class="o">=</span> <span class="s2">"fmnist_train"</span><span class="p">,</span>                               <span class="n">col.types</span><span class="o">=</span><span class="nf">c</span><span class="p">(</span><span class="s2">"factor"</span><span class="p">,</span> <span class="nf">rep</span><span class="p">(</span><span class="s2">"int"</span><span class="p">,</span> <span class="m">784</span><span class="p">)))</span> <br><span class="n">fmnist_test</span> <span class="o">&lt;-</span> <span class="n">h</span><span class="m">2</span><span class="n">o.importFile</span><span class="p">(</span><span class="n">path</span> <span class="o">=</span> <span class="s2">"data/fashion-mnist_test.csv"</span><span class="p">,</span>                              <span class="n">destination_frame</span> <span class="o">=</span> <span class="s2">"fmnist_test"</span><span class="p">,</span>                              <span class="n">col.types</span><span class="o">=</span><span class="nf">c</span><span class="p">(</span><span class="s2">"factor"</span><span class="p">,</span> <span class="nf">rep</span><span class="p">(</span><span class="s2">"int"</span><span class="p">,</span> <span class="m">784</span><span class="p">)))</span></code></pre> </figure> If everything went fine, we can check if our datasets are in H2O: <figure class="highlight"> <pre><code class="language-r" data-lang="r"><span class="n">h</span><span class="m">2</span><span class="n">o.ls</span><span class="p">()</span></code></pre> </figure> <figure class="highlight"> <pre><code class="language-r" data-lang="r">           <span class="n">key</span> <span class="m">1</span>  <span class="n">fmnist_test</span> <span class="m">2</span> <span class="n">fmnist_train</span></code></pre> </figure> Before we begin modeling, let’s take a quick look at the data: <figure class="highlight"> <pre><code class="language-r" data-lang="r"><span class="n">xy_axis</span> <span class="o">&lt;-</span> <span class="n">data.frame</span><span class="p">(</span><span class="n">x</span> <span class="o">=</span> <span class="n">expand.grid</span><span class="p">(</span><span class="m">1</span><span class="o">:</span><span class="m">28</span><span class="p">,</span><span class="m">28</span><span class="o">:</span><span class="m">1</span><span class="p">)[,</span><span class="m">1</span><span class="p">],</span>                      <span class="n">y</span> <span class="o">=</span> <span class="n">expand.grid</span><span class="p">(</span><span class="m">1</span><span class="o">:</span><span class="m">28</span><span class="p">,</span><span class="m">28</span><span class="o">:</span><span class="m">1</span><span class="p">)[,</span><span class="m">2</span><span class="p">])</span> <span class="n">plot_theme</span> <span class="o">&lt;-</span> <span class="nf">list</span><span class="p">(</span>  <span class="n">raster</span> <span class="o">=</span> <span class="n">geom_raster</span><span class="p">(</span><span class="n">hjust</span> <span class="o">=</span> <span class="m">0</span><span class="p">,</span> <span class="n">vjust</span> <span class="o">=</span> <span class="m">0</span><span class="p">),</span>  <span class="n">gradient_fill</span> <span class="o">=</span> <span class="n">scale_fill_gradient</span><span class="p">(</span><span class="n">low</span> <span class="o">=</span> <span class="s2">"white"</span><span class="p">,</span> <span class="n">high</span> <span class="o">=</span> <span class="s2">"black"</span><span class="p">,</span> <span class="n">guide</span> <span class="o">=</span> <span class="kc">FALSE</span><span class="p">),</span>  <span class="n">theme</span> <span class="o">=</span> <span class="n">theme</span><span class="p">(</span><span class="n">axis.line</span> <span class="o">=</span> <span class="n">element_blank</span><span class="p">(),</span>                <span class="n">axis.text</span> <span class="o">=</span> <span class="n">element_blank</span><span class="p">(),</span>                <span class="n">axis.ticks</span> <span class="o">=</span> <span class="n">element_blank</span><span class="p">(),</span>                <span class="n">axis.title</span> <span class="o">=</span> <span class="n">element_blank</span><span class="p">(),</span>                <span class="n">panel.background</span> <span class="o">=</span> <span class="n">element_blank</span><span class="p">(),</span>                <span class="n">panel.border</span> <span class="o">=</span> <span class="n">element_blank</span><span class="p">(),</span>                <span class="n">panel.grid.major</span> <span class="o">=</span> <span class="n">element_blank</span><span class="p">(),</span>                <span class="n">panel.grid.minor</span> <span class="o">=</span> <span class="n">element_blank</span><span class="p">(),</span>                <span class="n">plot.background</span> <span class="o">=</span> <span class="n">element_blank</span><span class="p">())</span> <span class="p">)</span> <br><span class="n">sample_plots</span> <span class="o">&lt;-</span> <span class="n">sample</span><span class="p">(</span><span class="m">1</span><span class="o">:</span><span class="n">nrow</span><span class="p">(</span><span class="n">fmnist_train</span><span class="p">),</span><span class="m">100</span><span class="p">)</span> <span class="o">%&gt;%</span> <span class="n">map</span><span class="p">(</span><span class="o">~</span> <span class="p">{</span>  <span class="n">plot_data</span> <span class="o">&lt;-</span> <span class="n">cbind</span><span class="p">(</span><span class="n">xy_axis</span><span class="p">,</span> <span class="n">fill</span> <span class="o">=</span> <span class="n">as.data.frame</span><span class="p">(</span><span class="n">t</span><span class="p">(</span><span class="n">fmnist_train</span><span class="p">[</span><span class="n">.x</span><span class="p">,</span> <span class="m">-1</span><span class="p">]))[,</span><span class="m">1</span><span class="p">])</span>  <span class="n">ggplot</span><span class="p">(</span><span class="n">plot_data</span><span class="p">,</span> <span class="n">aes</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">fill</span> <span class="o">=</span> <span class="n">fill</span><span class="p">))</span> <span class="o">+</span> <span class="n">plot_theme</span> <span class="p">})</span> <br><span class="n">do.call</span><span class="p">(</span><span class="s2">"grid.arrange"</span><span class="p">,</span> <span class="nf">c</span><span class="p">(</span><span class="n">sample_plots</span><span class="p">,</span> <span class="n">ncol</span> <span class="o">=</span> <span class="m">10</span><span class="p">,</span> <span class="n">nrow</span> <span class="o">=</span> <span class="m">10</span><span class="p">))</span></code></pre> </figure> <img src="/blog-old/assets/article_images/2017-09-04-into-h2o/fmnist.png" alt="100 Random items from Fashion-MNIST dataset" /> Now we will build a simple neural network, with one hidden layer of ten neurons: <figure class="highlight"> <pre><code class="language-r" data-lang="r"><span class="n">fmnist_nn_1</span> <span class="o">&lt;-</span> <span class="n">h</span><span class="m">2</span><span class="n">o.deeplearning</span><span class="p">(</span><span class="n">x</span> <span class="o">=</span> <span class="m">2</span><span class="o">:</span><span class="m">785</span><span class="p">,</span>                                <span class="n">y</span> <span class="o">=</span> <span class="s2">"label"</span><span class="p">,</span>                                <span class="n">training_frame</span> <span class="o">=</span> <span class="n">fmnist_train</span><span class="p">,</span>                                <span class="n">distribution</span> <span class="o">=</span> <span class="s2">"multinomial"</span><span class="p">,</span>                                <span class="n">model_id</span> <span class="o">=</span> <span class="s2">"fmnist_nn_1"</span><span class="p">,</span>                                <span class="n">l</span><span class="m">2</span> <span class="o">=</span> <span class="m">0.4</span><span class="p">,</span>                                <span class="n">ignore_const_cols</span> <span class="o">=</span> <span class="kc">FALSE</span><span class="p">,</span>                                <span class="n">hidden</span> <span class="o">=</span> <span class="m">10</span><span class="p">,</span>                                <span class="n">export_weights_and_biases</span> <span class="o">=</span> <span class="kc">TRUE</span><span class="p">)</span></code></pre> </figure> If we set <code class="highlighter-rouge">export_weights_and_biases</code> parameter to <code class="highlighter-rouge">TRUE</code> networks weights and biases will be saved and we can retrieve them using <code class="highlighter-rouge">h2o.weights()</code> and <code class="highlighter-rouge">h2o.biases()</code> functions. Thanks to this we can try to visualize neurons from the hidden layer (Note that we set ignore_const_cols to <code class="highlighter-rouge">FALSE</code> to get weights for every pixel). <figure class="highlight"> <pre><code class="language-r" data-lang="r"><span class="n">weights_nn_1</span> <span class="o">&lt;-</span> <span class="n">as.data.frame</span><span class="p">(</span><span class="n">h</span><span class="m">2</span><span class="n">o.weights</span><span class="p">(</span><span class="n">fmnist_nn_1</span><span class="p">,</span> <span class="m">1</span><span class="p">))</span> <span class="n">biases_nn_1</span> <span class="o">&lt;-</span> <span class="n">as.vector</span><span class="p">(</span><span class="n">h</span><span class="m">2</span><span class="n">o.biases</span><span class="p">(</span><span class="n">fmnist_nn_1</span><span class="p">,</span> <span class="m">1</span><span class="p">))</span> <br><span class="n">neurons_plots</span> <span class="o">&lt;-</span> <span class="m">1</span><span class="o">:</span><span class="m">10</span> <span class="o">%&gt;%</span> <span class="n">map</span><span class="p">(</span><span class="o">~</span> <span class="p">{</span>  <span class="n">plot_data</span> <span class="o">&lt;-</span> <span class="n">cbind</span><span class="p">(</span><span class="n">xy_axis</span><span class="p">,</span> <span class="n">fill</span> <span class="o">=</span> <span class="n">t</span><span class="p">(</span><span class="n">weights_nn_1</span><span class="p">[</span><span class="n">.x</span><span class="p">,])</span> <span class="o">+</span> <span class="n">biases_nn_1</span><span class="p">[</span><span class="n">.x</span><span class="p">])</span>  <span class="n">colnames</span><span class="p">(</span><span class="n">plot_data</span><span class="p">)[</span><span class="m">3</span><span class="p">]</span> <span class="o">&lt;-</span> <span class="s2">"fill"</span>  <span class="n">ggplot</span><span class="p">(</span><span class="n">plot_data</span><span class="p">,</span> <span class="n">aes</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">,</span> <span class="n">fill</span> <span class="o">=</span> <span class="n">fill</span><span class="p">))</span> <span class="o">+</span> <span class="n">plot_theme</span> <span class="p">})</span> <br><span class="n">do.call</span><span class="p">(</span><span class="s2">"grid.arrange"</span><span class="p">,</span> <span class="nf">c</span><span class="p">(</span><span class="n">neurons_plots</span><span class="p">,</span> <span class="n">ncol</span> <span class="o">=</span> <span class="m">3</span><span class="p">,</span> <span class="n">nrow</span> <span class="o">=</span> <span class="m">4</span><span class="p">))</span></code></pre> </figure> <img src="/blog-old/assets/article_images/2017-09-04-into-h2o/hidden_1.png" alt="Hidden layer" /> We can definitely see some resemblance to shirts and sneakers. Let’s test our model: <figure class="highlight"> <pre><code class="language-r" data-lang="r"><span class="n">h</span><span class="m">2</span><span class="n">o.confusionMatrix</span><span class="p">(</span><span class="n">fmnist_nn_1</span><span class="p">,</span> <span class="n">fmnist_test</span><span class="p">)</span></code></pre> </figure> <figure class="highlight"> <pre><code class="language-r" data-lang="r"><span class="n">Confusion</span> <span class="n">Matrix</span><span class="o">:</span> <span class="n">Row</span> <span class="n">labels</span><span class="o">:</span> <span class="n">Actual</span> <span class="n">class</span><span class="p">;</span> <span class="n">Column</span> <span class="n">labels</span><span class="o">:</span> <span class="n">Predicted</span> <span class="n">class</span>          <span class="m">0</span>   <span class="m">1</span>    <span class="m">2</span>    <span class="m">3</span>    <span class="m">4</span>    <span class="m">5</span>   <span class="m">6</span>    <span class="m">7</span>   <span class="m">8</span>   <span class="m">9</span>  <span class="n">Error</span>               <span class="n">Rate</span> <span class="m">0</span>       <span class="m">801</span>  <span class="m">12</span>   <span class="m">14</span>   <span class="m">87</span>    <span class="m">2</span>   <span class="m">36</span>  <span class="m">25</span>    <span class="m">1</span>  <span class="m">22</span>   <span class="m">0</span> <span class="m">0.1990</span>     <span class="o">=</span> <span class="m">199</span> <span class="o">/</span> <span class="m">1</span> <span class="m">000</span> <span class="m">1</span>         <span class="m">6</span> <span class="m">938</span>   <span class="m">23</span>   <span class="m">25</span>    <span class="m">1</span>    <span class="m">3</span>   <span class="m">4</span>    <span class="m">0</span>   <span class="m">0</span>   <span class="m">0</span> <span class="m">0.0620</span>     <span class="o">=</span>  <span class="m">62</span> <span class="o">/</span> <span class="m">1</span> <span class="m">000</span> <span class="m">2</span>        <span class="m">24</span>   <span class="m">4</span>  <span class="m">695</span>    <span class="m">7</span>  <span class="m">188</span>   <span class="m">18</span>  <span class="m">49</span>    <span class="m">0</span>  <span class="m">15</span>   <span class="m">0</span> <span class="m">0.3050</span>     <span class="o">=</span> <span class="m">305</span> <span class="o">/</span> <span class="m">1</span> <span class="m">000</span> <span class="m">3</span>        <span class="m">43</span>  <span class="m">23</span>   <span class="m">12</span>  <span class="m">865</span>   <span class="m">21</span>   <span class="m">13</span>  <span class="m">22</span>    <span class="m">0</span>   <span class="m">1</span>   <span class="m">0</span> <span class="m">0.1350</span>     <span class="o">=</span> <span class="m">135</span> <span class="o">/</span> <span class="m">1</span> <span class="m">000</span> <span class="m">4</span>         <span class="m">1</span>   <span class="m">6</span>  <span class="m">138</span>   <span class="m">44</span>  <span class="m">770</span>   <span class="m">14</span>  <span class="m">25</span>    <span class="m">0</span>   <span class="m">2</span>   <span class="m">0</span> <span class="m">0.2300</span>     <span class="o">=</span> <span class="m">230</span> <span class="o">/</span> <span class="m">1</span> <span class="m">000</span> <span class="m">5</span>         <span class="m">0</span>   <span class="m">0</span>    <span class="m">1</span>    <span class="m">0</span>    <span class="m">0</span>  <span class="m">865</span>   <span class="m">0</span>   <span class="m">90</span>   <span class="m">7</span>  <span class="m">37</span> <span class="m">0.1350</span>     <span class="o">=</span> <span class="m">135</span> <span class="o">/</span> <span class="m">1</span> <span class="m">000</span> <span class="m">6</span>       <span class="m">273</span>   <span class="m">6</span>  <span class="m">224</span>   <span class="m">53</span>  <span class="m">262</span>   <span class="m">46</span> <span class="m">107</span>    <span class="m">0</span>  <span class="m">28</span>   <span class="m">1</span> <span class="m">0.8930</span>     <span class="o">=</span> <span class="m">893</span> <span class="o">/</span> <span class="m">1</span> <span class="m">000</span> <span class="m">7</span>         <span class="m">0</span>   <span class="m">0</span>    <span class="m">0</span>    <span class="m">0</span>    <span class="m">0</span>  <span class="m">107</span>   <span class="m">0</span>  <span class="m">838</span>   <span class="m">0</span>  <span class="m">55</span> <span class="m">0.1620</span>     <span class="o">=</span> <span class="m">162</span> <span class="o">/</span> <span class="m">1</span> <span class="m">000</span> <span class="m">8</span>         <span class="m">4</span>   <span class="m">1</span>   <span class="m">13</span>   <span class="m">22</span>    <span class="m">5</span>   <span class="m">36</span>  <span class="m">10</span>    <span class="m">8</span> <span class="m">897</span>   <span class="m">4</span> <span class="m">0.1030</span>     <span class="o">=</span> <span class="m">103</span> <span class="o">/</span> <span class="m">1</span> <span class="m">000</span> <span class="m">9</span>         <span class="m">0</span>   <span class="m">0</span>    <span class="m">0</span>    <span class="m">0</span>    <span class="m">0</span>   <span class="m">40</span>   <span class="m">0</span>  <span class="m">104</span>   <span class="m">0</span> <span class="m">856</span> <span class="m">0.1440</span>     <span class="o">=</span> <span class="m">144</span> <span class="o">/</span> <span class="m">1</span> <span class="m">000</span> <span class="n">Totals</span> <span class="m">1152</span> <span class="m">990</span> <span class="m">1120</span> <span class="m">1103</span> <span class="m">1249</span> <span class="m">1178</span> <span class="m">242</span> <span class="m">1041</span> <span class="m">972</span> <span class="m">953</span> <span class="m">0.2368</span> <span class="o">=</span> <span class="m">2</span> <span class="m">368</span> <span class="o">/</span> <span class="m">10</span> <span class="m">000</span></code></pre> </figure> Accuracy 0.7632 isn’t a great result, but we didn’t use full capabilities of H2O yet. We should do something more advanced! In <code class="highlighter-rouge">h2o.deeplearning()</code> function there’s over 70 parameters responsible for structure and optimization of our model. Changing thme should give as much better results. <figure class="highlight"> <pre><code class="language-r" data-lang="r"><span class="n">fmnist_nn_final</span> <span class="o">&lt;-</span> <span class="n">h</span><span class="m">2</span><span class="n">o.deeplearning</span><span class="p">(</span><span class="n">x</span> <span class="o">=</span> <span class="m">2</span><span class="o">:</span><span class="m">785</span><span class="p">,</span>                                    <span class="n">y</span> <span class="o">=</span> <span class="s2">"label"</span><span class="p">,</span>                                    <span class="n">training_frame</span> <span class="o">=</span> <span class="n">fmnist_train</span><span class="p">,</span>                                    <span class="n">distribution</span> <span class="o">=</span> <span class="s2">"multinomial"</span><span class="p">,</span>                                    <span class="n">model_id</span> <span class="o">=</span> <span class="s2">"fmnist_nn_final"</span><span class="p">,</span>                                    <span class="n">activation</span> <span class="o">=</span> <span class="s2">"RectifierWithDropout"</span><span class="p">,</span>                                    <span class="n">hidden</span><span class="o">=</span><span class="nf">c</span><span class="p">(</span><span class="m">1000</span><span class="p">,</span> <span class="m">1000</span><span class="p">,</span> <span class="m">2000</span><span class="p">),</span>                                    <span class="n">epochs</span> <span class="o">=</span> <span class="m">180</span><span class="p">,</span>                                    <span class="n">adaptive_rate</span> <span class="o">=</span> <span class="kc">FALSE</span><span class="p">,</span>                                    <span class="n">rate</span><span class="o">=</span><span class="m">0.01</span><span class="p">,</span>                                    <span class="n">rate_annealing</span> <span class="o">=</span> <span class="m">1.0e-6</span><span class="p">,</span>                                    <span class="n">rate_decay</span> <span class="o">=</span> <span class="m">1.0</span><span class="p">,</span>                                    <span class="n">momentum_start</span> <span class="o">=</span> <span class="m">0.4</span><span class="p">,</span>                                    <span class="n">momentum_ramp</span> <span class="o">=</span> <span class="m">384000</span><span class="p">,</span>                                    <span class="n">momentum_stable</span> <span class="o">=</span> <span class="m">0.98</span><span class="p">,</span>                                    <span class="n">input_dropout_ratio</span> <span class="o">=</span> <span class="m">0.22</span><span class="p">,</span>                                    <span class="n">l</span><span class="m">1</span> <span class="o">=</span> <span class="m">1.0e-5</span><span class="p">,</span>                                    <span class="n">max_w2</span> <span class="o">=</span> <span class="m">15.0</span><span class="p">,</span>                                    <span class="n">initial_weight_distribution</span> <span class="o">=</span> <span class="s2">"Normal"</span><span class="p">,</span>                                    <span class="n">initial_weight_scale</span> <span class="o">=</span> <span class="m">0.01</span><span class="p">,</span>                                    <span class="n">nesterov_accelerated_gradient</span> <span class="o">=</span> <span class="kc">TRUE</span><span class="p">,</span>                                    <span class="n">loss</span> <span class="o">=</span> <span class="s2">"CrossEntropy"</span><span class="p">,</span>                                    <span class="n">fast_mode</span> <span class="o">=</span> <span class="kc">TRUE</span><span class="p">,</span>                                    <span class="n">diagnostics</span> <span class="o">=</span> <span class="kc">TRUE</span><span class="p">,</span>                                    <span class="n">ignore_const_cols</span> <span class="o">=</span> <span class="kc">TRUE</span><span class="p">,</span>                                    <span class="n">force_load_balance</span> <span class="o">=</span> <span class="kc">TRUE</span><span class="p">,</span>                                    <span class="n">seed</span> <span class="o">=</span> <span class="m">3.656455e+18</span><span class="p">)</span> <br><span class="n">h</span><span class="m">2</span><span class="n">o.confusionMatrix</span><span class="p">(</span><span class="n">fmnist_nn_final</span><span class="p">,</span> <span class="n">fmnist_test</span><span class="p">)</span></code></pre> </figure> <figure class="highlight"> <pre><code class="language-r" data-lang="r"><span class="n">Confusion</span> <span class="n">Matrix</span><span class="o">:</span> <span class="n">Row</span> <span class="n">labels</span><span class="o">:</span> <span class="n">Actual</span> <span class="n">class</span><span class="p">;</span> <span class="n">Column</span> <span class="n">labels</span><span class="o">:</span> <span class="n">Predicted</span> <span class="n">class</span>          <span class="m">0</span>    <span class="m">1</span>    <span class="m">2</span>    <span class="m">3</span>    <span class="m">4</span>   <span class="m">5</span>   <span class="m">6</span>    <span class="m">7</span>    <span class="m">8</span>   <span class="m">9</span>  <span class="n">Error</span>            <span class="n">Rate</span> <span class="m">0</span>       <span class="m">898</span>    <span class="m">0</span>   <span class="m">14</span>   <span class="m">15</span>    <span class="m">1</span>   <span class="m">1</span>  <span class="m">66</span>    <span class="m">0</span>    <span class="m">5</span>   <span class="m">0</span> <span class="m">0.1020</span>  <span class="o">=</span> <span class="m">102</span> <span class="o">/</span> <span class="m">1</span> <span class="m">000</span> <span class="m">1</span>         <span class="m">2</span>  <span class="m">990</span>    <span class="m">2</span>    <span class="m">6</span>    <span class="m">0</span>   <span class="m">0</span>   <span class="m">0</span>    <span class="m">0</span>    <span class="m">0</span>   <span class="m">0</span> <span class="m">0.0100</span>   <span class="o">=</span> <span class="m">10</span> <span class="o">/</span> <span class="m">1</span> <span class="m">000</span> <span class="m">2</span>        <span class="m">12</span>    <span class="m">1</span>  <span class="m">875</span>   <span class="m">13</span>   <span class="m">60</span>   <span class="m">1</span>  <span class="m">35</span>    <span class="m">0</span>    <span class="m">3</span>   <span class="m">0</span> <span class="m">0.1250</span>  <span class="o">=</span> <span class="m">125</span> <span class="o">/</span> <span class="m">1</span> <span class="m">000</span> <span class="m">3</span>        <span class="m">16</span>   <span class="m">11</span>    <span class="m">8</span>  <span class="m">925</span>   <span class="m">23</span>   <span class="m">1</span>  <span class="m">14</span>    <span class="m">0</span>    <span class="m">2</span>   <span class="m">0</span> <span class="m">0.0750</span>   <span class="o">=</span> <span class="m">75</span> <span class="o">/</span> <span class="m">1</span> <span class="m">000</span> <span class="m">4</span>         <span class="m">1</span>    <span class="m">0</span>   <span class="m">61</span>   <span class="m">21</span>  <span class="m">885</span>   <span class="m">0</span>  <span class="m">30</span>    <span class="m">0</span>    <span class="m">2</span>   <span class="m">0</span> <span class="m">0.1150</span>  <span class="o">=</span> <span class="m">115</span> <span class="o">/</span> <span class="m">1</span> <span class="m">000</span> <span class="m">5</span>         <span class="m">0</span>    <span class="m">0</span>    <span class="m">1</span>    <span class="m">0</span>    <span class="m">0</span> <span class="m">964</span>   <span class="m">0</span>   <span class="m">24</span>    <span class="m">1</span>  <span class="m">10</span> <span class="m">0.0360</span>   <span class="o">=</span> <span class="m">36</span> <span class="o">/</span> <span class="m">1</span> <span class="m">000</span> <span class="m">6</span>       <span class="m">131</span>    <span class="m">2</span>   <span class="m">66</span>   <span class="m">22</span>   <span class="m">50</span>   <span class="m">0</span> <span class="m">722</span>    <span class="m">0</span>    <span class="m">7</span>   <span class="m">0</span> <span class="m">0.2780</span>  <span class="o">=</span> <span class="m">278</span> <span class="o">/</span> <span class="m">1</span> <span class="m">000</span> <span class="m">7</span>         <span class="m">0</span>    <span class="m">0</span>    <span class="m">0</span>    <span class="m">0</span>    <span class="m">0</span>  <span class="m">10</span>   <span class="m">0</span>  <span class="m">963</span>    <span class="m">0</span>  <span class="m">27</span> <span class="m">0.0370</span>   <span class="o">=</span> <span class="m">37</span> <span class="o">/</span> <span class="m">1</span> <span class="m">000</span> <span class="m">8</span>         <span class="m">4</span>    <span class="m">1</span>    <span class="m">4</span>    <span class="m">1</span>    <span class="m">1</span>   <span class="m">2</span>   <span class="m">3</span>    <span class="m">2</span>  <span class="m">981</span>   <span class="m">1</span> <span class="m">0.0190</span>   <span class="o">=</span> <span class="m">19</span> <span class="o">/</span> <span class="m">1</span> <span class="m">000</span> <span class="m">9</span>         <span class="m">0</span>    <span class="m">0</span>    <span class="m">0</span>    <span class="m">0</span>    <span class="m">0</span>   <span class="m">6</span>   <span class="m">0</span>   <span class="m">37</span>    <span class="m">0</span> <span class="m">957</span> <span class="m">0.0430</span>   <span class="o">=</span> <span class="m">43</span> <span class="o">/</span> <span class="m">1</span> <span class="m">000</span> <span class="n">Totals</span> <span class="m">1064</span> <span class="m">1005</span> <span class="m">1031</span> <span class="m">1003</span> <span class="m">1020</span> <span class="m">985</span> <span class="m">870</span> <span class="m">1026</span> <span class="m">1001</span> <span class="m">995</span> <span class="m">0.0840</span> <span class="o">=</span> <span class="m">840</span> <span class="o">/</span> <span class="m">10</span> <span class="m">000</span></code></pre> </figure> Accuracy 0.916 is a lot better result, but there’s still a lot of things we can do to improve our model. In the future, we can consider using a grid or random search to find best hyperparameters or use same ensemble methods to get better results.

Have questions or insights?

Engage with experts, share ideas and take your data journey to the next level!

Is Your Software GxP Compliant?

Download a checklist designed for clinical managers in data departments to make sure that software meets requirements for FDA and EMA submissions.
Explore Possibilities

Share Your Data Goals with Us

From advanced analytics to platform development and pharma consulting, we craft solutions tailored to your needs.

Talk to our Experts
r
tutorials
ai&research